
A Gentle Guide to Fully Spatial Models

siplab, Vignette #2

Vignette #1 about Hegyi’s index described competition indices based
on sizes and distances between plants (figure 1). Those can be calculated
with function pairwise(). Here I discuss models that depend on the full
configuration of competitor locations, including interactions among three
or more plants. These are handled by function assimilation(). Refer to
vignette #1 for data preparation, and for edge effects adjustments. García
(2014) covers more technical details and literature references.

Figure 1: Pairwise competition. (a) Count C. D. F. Reventlow, amateur forester
and Danish prime minister, used tree sizes and inter-tree distances to somehow
produce yield tables around the year 1800. (b) G. R. Staebler, in his 1951 Mas-
ter Thesis at the University of Michigan, used as a competition index the sum of
the overlap widths d′ of circular zones of influence (ZOIs, type ?staebler_ker for
more).
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Area potentially available (APA)

A familiar concept is that of growing space, an area from where a plant
can capture resources — light, water and nutrients. Working with radiata
pine plantations in New Zealand, in 1965 G. S. Brown defined a tree’s area
potentially available (APA) as the area that is closer to that tree than to
any other. The same idea was published in 1966 by R. Mead for carrots
in England. In the words of Mead, “a spot of ground is allocated to the
area of the plant which is nearest to the spot”. The result is a partition
(tessellation or tiling) of the plane into polygons, known in mathematics
as Voronoi polygons or Dirichlet cells. The area of the APA polygon can be
used for predicting growth rates.

There are a number of clever ways of finding APAs, e.g., figure 2. Exer-
cise: draw the APA for Reventlow’s tree in figure 1. We use here a pedes-
trian approach that can be extended to more complex situations: Discretize
the area of a sample plot into a grid of small square pixels, representing
Mead’s “spots”. Directly applying the definition, for each pixel (spot), com-
pute the distances to all the plants, and allocate the spot to the plant with
the shortest distance. A plant’s APA can be approximated by counting its
pixels and multiplying by the pixel size.

(a) (b)

Figure 2: Finding APAs (thanks GeoGebra!) (a) Bisecting plant-to-plant line seg-
ments. (b) Compass-and-ruler; compare with figure 1b, ZOI overlaps are split in
two.

In one dimension, with plants located at x = 2 and x = 7, the situation
can be visualized as follows:
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# distance from plant 1 at point (spot) x:
curve(abs(x - 2), from=0, to=10, ylim=c(0,4), lty=2,

asp=1, ylab="distance")
curve(abs(x - 7), lty=2, add=T) # distance from plant 2
curve(pmin(abs(x - 2), abs(x - 7)), add=T) # minimum distance

0 2 4 6 8 10

−
2

0
2

4
6

x

di
st

an
ce

In two dimensions, the point-to-plant distance function, say
sqrt((x - plantx)^2 + (y - planty)^2), is a cone with the vertex at
the plant location. A plant’s APA includes all points (or pixels) for which
that plant’s cone surface is the lowest. In other words, the extent of the
APA is given by the cone’s first intersection. The Voronoi tessellation is
generated by an intersection of identical cones.

It is not difficult to see that the whole thing still works if we flip the
cones upside down, and substitute maximum for minimum. And it does not
make any difference if we shift all the cones up or down by some amount.
One can thus visualize the likely mechanistic motivation behind the APA
idea: Plants exert some competitive pressure or influence over spots on the
ground, which decreases with distance. And they grab for themselves those
spots where their influence is higher than that of their neighbors.

With this decreasing conical influence function (IF) we can now use
assimilation() to calculate the APAs for the plants of figure 2. Assume
that these are trees in a 10×10 m plot. Function assimilation() ignores
pixels where the influence is not positive, so we make the cone high enough
to avoid them.
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# Assume siplab already installed (install.package("siplab")),
# and loaded with library(siplab)
# The data must be in a marked ppp object:
threeTrees <- ppp(x=c(2,7,6), y=c(3,3,7), c(0,10), c(0,10),

marks=c(10,10,10)) # marks are arbitrary (for now)
# Influence function. Takes distance components
cone_inf <- function(dx, dy, ...){ # and allow other args

10 - sqrt(dx^2 + dy^2) # 10 m height and radius at the base
}
# That's it, do it
a <- assimilation(threeTrees, influence=cone_inf)
points(a) # add the tree locations to the influence map

4
5

6
7

8
9

# With a larger data set:
b <- assimilation(spruces, influence=cone_inf)
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The pictures show the maximum influence value for each pixel using color-
coding. The output is like the input data, but with an additional mark
named aindex containing the APA size for each tree:

a

## Marked planar point pattern: 3 points
## Mark variables: marks(plants), aindex
## window: rectangle = [0, 10] x [0, 10] units

marks(a)

## marks(plants) aindex
## 1 10 31.12
## 2 10 29.04
## 3 10 41.52

sum(marks(a)$aindex)

## [1] 101.68

Not exactly 100 m2 because of the discretization. The trade-off between
accuracy and computing time can be controlled through the pixel size in
the optional argument pixsize of assimilation(). The default is a 0.2-
units square pixel, in this example 20×20 cm.

Instead of cone_inf() we could have used a pre-defined IF with suit-
able parameters. Both gates_inf() and gnomon_inf() are cones if a=1
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(see ?influence). For instance, gnomon_inf() implements a general form
S−bRa, where S is the mark value, and R is point-to-plant distance. There-
fore, assimilation(threeTrees, influence=gnomon_inf, infpar=c(a=1,
b=1, smark=1)) produces exactly the same result. The argument infpar
specifies parameters for the IF, and smark identifies the mark to use for size
if there are more than one.

Actually, after some doodling on the back of an envelope, we can con-
vince ourselves that the cone angle does not matter. More pointed or flat-
ter cones produce the same Voronoi tessellation, provided that we adjust
the height to avoid gaps. The default in assimilation() happens to be
influence=gnomon_inf with parameters a = 1 and b = 4. From S− bR = 0,
a 10 m ZOI radius is obtained with S = 40. Therefore, after setting
marks(threeTrees) <- 40, the same APAs should be obtained with just
assimilation(threeTrees). Try it!

Perhaps more surprising, the profile of the IF does not matter ei-
ther (more doodling). All that is needed is a radially symmetric func-
tion decreasing with distance, identical for all plants. Try a paraboloid:
assimilation(threeTrees, influence=gnomon_inf, infpar=c(a=2, b=1,
smark=1)). The math level goes downhill from here, don’t worry!

Size-dependent APAs

The availability of computers took the pain out of Staebler’s and Brown’s
pencil-and-paper exercises, and the interest in individual-tree modelling in-
creased toward the end of the 1960s (Mead had used computer programs).
It exploded in the forestry literature throughout the 70s. Mostly using pair-
wise indices, but a few researchers looked at the “obvious” next step in the
APA approach: larger APAs for larger trees. Instead of bisecting the inter-
tree distance (figure 2a), the idea was to shift the perpendicular to a point
dependent on the relative tree sizes. Size was usually diameter or tree basal
area, which is easy to obtain. As we shall see in a moment, only very par-
ticular straight-line partitions of the distance produce proper tessellations.
Most proposals leave orphaned unused gaps.

In terms of IFs, it is natural to think that larger trees would exert
a higher competitive pressure at a given distance. Let’s assign different
“sizes” in the marks of our three trees — in principle, the mark could be
any function of size. Try conical or parabolic IFs with the influence at the
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tree location equal to the mark value:

marks(threeTrees) <- c(35,30,40) # size
# Cone, increased resolution for sharper boundaries:
a <- assimilation(threeTrees, pixsize=0.05)
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# Paraboloid:
b <- assimilation(threeTrees, pixsize=0.05, infpar=c(a=2,

b=.8, smark=1))
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Unlike in the case of equal sizes, here the shape of the IF does matter. Not
too easy to see, but if you zoom-in you can verify that for the conical IF the
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APA boundaries are curved. The quadratic paraboloid is exceptional in pro-
ducing straight lines (also the ellipsoid from gates_inf() with a=2). Then,
the result is a generalization of the Voronoi/Dirichlet tessellation, known
as a power diagram or Laguerre-Voronoi diagram (García, 2014, Appendix
B3). Of course, there is no apparent reason why straight boundaries should
be better than curved boundaries.

Some authors suggested that there should be a maximum distance be-
yond which the tree cannot utilize the space, even if not contested by any
competitors. Then, if the spacing is wide enough or the trees are small, the
APA is the intersection of the tessellation element and a circle that repre-
sents the reach of a free-growing tree. In terms of influence, that would
be the distance at which the IF becomes 0, generating a circular area that
might be called a (free-growing) zone of influence (ZOI). This is modelled
automatically by assimilation(), as can be seen with small sizes or low
densities. Calculated ZOI areas can be obtained by setting the optional
argument afree = TRUE.

Just for fun, repeat the three-tree calculations above with other data.
Some tree ppp data sets with size marks, included in siplab or spat-
stat: boreasNP, boreasNS, boreasSA, boreasSP, finpines, longleaf,
spruces, waka. With large data sets you may have to wait a few minutes.

Only for the really curious, I leave as an exercise figuring out the (or
a?) right way of splitting inter-tree distances in a size-dependent version
of figure 2a. Hints: (1) Look at the intersection along the line joining two
trees, as done before for the distance function,

f <- function(x, size) {gnomon_inf(x, 0, size, par=c(a=2, b=1,
smark=1))}

curve(f(x, 35), from=-1, to=6, lty=2, ylab="Influence") # tree 1
curve(f(5 - x, 30), lty=2, add=T) # tree 2
curve(pmax(f(x, 35), f(5 - x, 30)), add=T)
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Physical crown interference

In 1975 Ken Mitchell described the TASS growth model for Douglas fir in
British Columbia, based on detailed 3-dimensional modelling of crown de-
velopment and interactions. It assumes that branch growth in length is
proportional to height increment, decreasing with distance from the top.
Every year, a new layer of foliage forms near the tip of the branches. Fo-
liage stays alive for five years, partially in the 5th layer. Deeper in the
canopy, losses from respiration exceed gains from photosynthesis, and the
tree sheds those leaves or needles. Consequently, in a free-growing tree the
live crown moves up with height growth, maintaining a constant shape.
Branch growth stops on contact with neighboring trees (figure 3).

TASS computes an age-weighted amount of foliage for each tree by
numerical integration on a 3-dimensional grid, using it to predict the
tree annual stem volume increment. The weighting represents decreas-
ing light with depth, and in the bottom layer also the lower foliage
density. Increment in TASS depends too on the ratio of the amount
of foliage to the amount that the tree would have in a free-growing
situation. The work of Mitchell has been highly influential, inspiring for
instance depictions of tree competition in the classic text of Oliver and
Larson (figure 3). And siplab! TASS is still used in British Columbia
(https://www2.gov.bc.ca/gov/content/industry/forestry/managing-
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Figure 3: Left: Foliage layers accumulate in TASS, causing the crown to move up
maintaining its shape (after Mitchell, 1975). Right: Diagrams of canopy develop-
ment in Oliver & Larson’s “Forest Stand Dynamics” (1990, 1996).

our-forest-resources/forest-inventory/growth-and-yield-
modelling/tree-and-stand-simulator-tass). Animations and other
material are available at http://forestgrowth.unbc.ca/tadam.

Mitchell’s competition mechanism can be represented in siplab. The
TASS crown profile equation was inverted to produce an influence function,
tass_inf(). That is, the IF, that specifies crown surface height as a function
of radial distance, was obtained from the profile equation that gives radius
as a function of distance from the top.

curve(tass_inf(x, 0, marks=6), from=-3, to=3, asp=1, ylab="")
curve(gnomon_inf(x, 0, 6, par=c(a=1.3, b=2, smark=1)), lty=2,

add=T)
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Using tree heights as marks, siplab’s assimilation index gives the area of
the crown projection. The TASS amount of foliage is proportional to that,
because the canopy depth is uniform (see figure 3). Except for tapering
near the ground of free-growing edges, which should be negligible unless
we are dealing with very young trees. The proportionality factor is not
normally needed, but anyway, it is the sum of the weights for the 5 layers.
The free-growing area is the ZOI, obtained by setting afree=TRUE.

For instance, for finpines the necessary information is obtained with

a <- assimilation(finpines, afree=TRUE, influence=tass_inf,
infpar=list(b=3.432, c=6.1, smark="height"))
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aok <- edges(a, -2) # remove trees near the plot border
head(marks(aok))

## diameter height aindex afree
## 12 1 1.3 0.08 1.48
## 13 5 3.8 3.48 8.76
## 14 1 1.5 0.00 1.80
## 22 1 1.4 0.00 1.56
## 24 4 4.0 4.04 9.40
## 28 1 1.9 0.28 2.76

If you really want the full details, see for instance http://web.unbc.
ca/~garcia/FSTY405/spatial08b.pdf and http://web.unbc.ca/~garcia/
FSTY405/lab6.pdf.

In the late 1970s, D. J. Gates and collaborators at the Australian CSIRO
elucidated the relationship between crown profiles and Voronoi-type tes-
sellations. They also carried out an axiomatic mathematical analysis of
space partitioning by plants. Their presentation is rather technical, but
essentially, starting from a set of reasonable assumptions, it is concluded
that the equation of the crown profile that generates the partition must be-
long to a certain class of functions. With the additional condition of crown
shapes being similar, that is, differing only by a scale factor, the options
narrow down to the generalized ellipsoid in gates_inf(). I found that,
if instead of being similar, the shapes differ only by a vertical displace-
ment as in TASS, then the equation must be the generalized paraboloid of
gnomon_inf(). I called this gnomonic scaling, gnomon being “that which,
added to an entity (number or shape), makes a new entity similar to the
starting entity” (Wikipedia). More in Appendix B of García (2014).

In mixed stands one might use different IF parameters for each species,
chosen according to a species code included in the marks. See the example
in ?influence.
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Generalizations

Influence function

It is common to find forests with wide spaces between trees, for which the
models of physical crown interference are not realistic. In my experience
there is often close contact in temperate forests, especially in plantations
not limited by moisture or nutrients, but in boreal forests that is not the
case. Perhaps because the light comes in at a shallow angle. It has been
suggested that “crown shyness” is due to wind sway, but that would not
change with latitude. Anyway, the IF can be interpreted more abstractly
as a shading potential, extending beyond the crown and possibly having a
different shape.

Of course, in many instances light is not the limiting factor, below-
ground competition can be more important than aboveground competition.
One might even use separate aboveground and belowground competition
or assimilation indices, although I have not seen that done. In general, the
IF may be thought of as a certain measure of competitive pressure in the
contest for “resources”. Similar concepts have been used by various authors
in various contexts (figure 4). All of them can be simulated within siplab.
The results of Gates et al. about resource partitioning are still relevant.

Figure 4: Examples of influence function. See García (2014) for sources.
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Symmetry/asymmetry

The type of competition discussed until now is one-sided, meaning that
the plant with the highest influence at some spot grabs the totality of the
resource in there. Winner-takes-all. Or completely asymmetric competi-
tion. Another possibility would be for the resource at a spot to be shared
among plants, say in proportion to their influence values (symmetric). In
assimilation() these two alternatives are specified setting the parameter
asym = Inf (the default) or asym = 1, respectively. These are perhaps the
most interesting cases, but it is also possible to specify sharing more or less
than proportional to influence, along a continuum from asym = 0 to asym
= Inf.

One-sided competition makes sense in terms of physical crown interfer-
ence. Maybe not so much with wider competitive-pressure IFs. Note that
one-sided models do not allow trees to survive under the canopy, as it of-
ten happens with light-tolerant species. Repeating the finpines example
above, but with symmetric competition:

a <- assimilation(finpines, afree=TRUE, influence=tass_inf,
infpar=list(b=3.432, c=6.1, smark="height"), asym=1)
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head(marks(edges(a, -2)))

## diameter height aindex afree
## 12 1 1.3 0.1870010 1.48
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## 13 5 3.8 2.6793563 8.76
## 14 1 1.5 0.1706911 1.80
## 22 1 1.4 0.1693592 1.56
## 24 4 4.0 2.6331633 9.40
## 28 1 1.9 0.4121050 2.76

No zero assimilation indices this time! The color map interpretation is more
obscure in this case. It has been said that aboveground competition tends
to be highly asymmetric (“sharp”), while belowground competition tends
to be more symmetric (diffuse).

The concept of symmetry or asymmetry here differs from that in the
literature in that it applies to spots, not to plants.

Efficiency

Once the plant has captured some amount of resource from a spot, the ben-
efit from it might vary with distance. Reaching distant spots can mean a
higher expense in energy and materials (branches, roots). It may be reason-
able then to apply a distance-dependent weight to the captured resource.
This is done in assimilation() by specifying an efficiency function. The
function name is passed in the parameter efficiency, with optional param-
eters in effpar. The default is a flat efficiency (no weighting). There are
built-in efficiency functions proportional to each of the built-in IFs, scaled
to 1 at distance 0. See ?efficiency.

Resource distribution

SIP models usually (always?) assume a spatially uniform resource avail-
ability. For some purposes, it might be interesting to investigate the effects
of a heterogeneous resource. For instance, micro-site fertility variability,
or gradients due to slope, or to wind or light direction. I do not know of
any examples in the literature, but just in case, assimilation() accepts a
resource map in parameter resource. The default is uniform.

Gradients might also be simulated through deviations from radial sym-
metry. That is, changing the circular cross section of IFs to elliptical or
other shapes. This can be done in siplab since the influence and efficiency
functions receive the distance components dx and dy, and not just the ra-
dius.
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Causality

For many annual plants, what measure of “size” to use makes little differ-
ence. This is not the case for trees, which undergo large changes in form
over time and across growing conditions. The most common size mea-
sure in individual-tree models is stem diameter, or tree basal area (actually
diameter squared times a constant), since diameter is easy to measure ac-
curately. However, diameter is more a consequence of growth than a cause.
It is difficult to think of a physiological mechanism by which the amount
of mostly dead xylem accumulated on the stem might significantly affect
growth rates. Height, as seen before, is a more logical driver, from its con-
nection with shading and with the extent of the root system. Volume or
biomass growth rates seem suitable on the left-hand side of mechanistic
growth models.

More generally, the common practice of using the same size variable
on both sides of a growth equation seems to me a bad idea, most of the
time. Faster-growing plants tend to be larger, not necessarily the other way
around. As a simple example, consider 30 trees with growth rates that
vary due to genetics, micro-site, competition environment, or anything else
unrelated to size:

incr <- rnorm(30, 1, 0.2) # diameter increments for 30 trees
incr

## [1] 1.1767331 1.3120386 0.7706775 1.1788859 1.0881140 1.3427669
## [7] 0.5201437 0.9930019 0.9082859 0.8714830 0.9964638 0.8092390
## [13] 1.1707090 0.8150878 1.0751773 1.0535637 1.0887839 0.6774631
## [19] 1.0566336 0.9471121 0.9441113 0.7835744 1.2332726 0.9225683
## [25] 1.1048579 0.9014221 0.8756495 0.9405328 0.4559870 1.0291016

# Grow the diameter for 10 years:
D <- incr
D <- D + incr # the long way, for clarity
D <- D + incr
D <- D + incr
D <- D + incr
D <- D + incr
D <- D + incr
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D <- D + incr
D <- D + incr
D <- D + incr
regr <- lm(incr ~ D) # regress increment over D at age 10
plot(incr ~ D) # plot it
abline(regr)
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Feel free to embellish this adding environmental noise and/or measure-
ment error, or using more complex growth equations.

The problem seems obvious, after thinking about it, but curiously it has
been largely ignored. One is essentially extrapolating past growth. Models
will produce referee-pleasing fit statistics, for the wrong reasons. Fine if
the model is used only for the population that was sampled. But models
are typically used to make predictions for new unobserved situations.

We all remember from statistics classes that “correlation (or association)
is not causation”. Two problems with that: First, it tends to be forgotten
in the clamor of academic battle — grants, publish-or-perish. Second, con-
ventional Statistics deals with association, causation is considered outside
its scope. You are not supposed to use a model beyond the data, if you do,
you’re on your own.

Lately, there has been a surge of interest in Causal Inference, in part re-
viving methods pioneered by Sewall Wright in the 1920s and 30s. Books by
Pearl, Robbins, Rubin. Currently, the topic is characterized by controversy,
competing approaches and warring factions. Still learning, but the main
focus seems to be on confounders in observational studies, I have not seen
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any good solutions to the reverse causality problem (yet?). Worth keep-
ing the issue in mind, though. For now, I suggest sticking to biologically
meaningful models and avoiding diameters on the right-hand sides.

Plasticity

Normally, SIP models use stem-base or breast-height coordinates, and as-
sume rigid shapes. In reality, plants adapt to the available space, by leaning
and through differential branch growth, to occupy less contested areas. Es-
pecially trees (figure 5). Crowns move, tending to balance competition
intensity on opposite sides.

z*

Figure 5: (a) Crown profiles or influence functions in a spatial model with no
plasticity. (b) Leaning and shape distortion equalizing competition intensity. From
Lee & García, see García (2017) for references.

A plasticity simulation can be performed in siplab by iteratively mov-
ing the coordinates to the centroid of the APA. Centroids are calculated
in assimilation() if the parameter centroid is set to TRUE. Let us use the
BOREAS aspen data, a conical IF, one-sided competition, and flat efficiency.
We limit displacements to 3 m so that crowns do not wander too far.

trees <- boreasSA
dlim <- 3 # displacement limit
tolerance <- 0.1 # for convergence criterion
xy0 <- coords(trees) # initial coordinates
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lastdxy <- 0 # previous displacement
repeat {

a <- assimilation(trees, infpar=list(a=1, b=2.7,
smark="height"),centroid = TRUE)

dxy <- marks(a)[, c('cx','cy')] - xy0 # potential displ.
dxy[marks(a)$aindex <= 0,] <- 0 # ignore over-topped trees
d2 <- rowSums(dxy^2) # squared displacement lengths
toofar <- d2 > dlim^2
dxy[toofar, ] <- dlim * dxy[toofar, ] / sqrt(d2[toofar])
coords(trees) <- xy0 + dxy
if(max(abs(dxy - lastdxy)) < tolerance) break # converged
lastdxy <- dxy

}
par(mfcol=1:2)
plot(edges(boreasSA, -5), main="Before", use.marks=F)
plot(edges(trees, -5), main="After", use.marks=F)

Results omitted, try it yourself (will take a minute or two). More details
and refinements in my 2014 publication cited in García (2017).

Of course, in 3 (or 2?) dimensions the contact levels z∗ cannot reach
exactly the same height on all sides, unlike in figure 5. Unless the IF
cross sections deviate from circular to better fill the gaps. With one-sided
competition, a uniform z∗ can be achieved defining an IF shape by the
cross-sectional area as a function of distance from the top. For instance, in
the paraboloid the area increases linearly with distance, and in the cone,
quadratically. Two more assumptions are needed for uniform z∗: no big
gaps so that displacements are not constrained, and density high enough
and/or trees tall enough for full canopy closure (z∗ > 0). Then, one has
what Strigul and collaborators in Pacala’s Lab at Princeton University called
the perfect plasticity assumption (PPA). A consequence is that the tree loca-
tions become totally irrelevant. Think of a soap froth, where the bubbles
move in equilibrium with their neighbors.

Strigul et al. obtained their results for a specific growth model, a vari-
ant of the well-known Sortie. But a more general theory can be derived,
applicable to any IF. The basic idea is that, under the PPA, the sum of the IF
cross-sectional areas at the common contact height z∗ must equal the total
plot area. The equation can be solved for z∗, usually numerically. Then z∗

and the IF are used to calculate the cross section at that height for each
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tree, which is its APA. Closed-form solutions, that is, explicit formulas, ex-
ist for the special cases of paraboloids and cones. Appendix A of García
(2017) gives a generalization to mixed stands with any number of species,
each with its own IF. No idea how to work out the case of symmetric com-
petition.

The paraboloid IF, or rather the IF with cross-sectional area propor-
tional to length, is mathematically the most convenient. Derivations for
a quadratic area-length relationship (cone) are a little more complicated,
involving the variance of tree heights and not only the mean. Cones, how-
ever, are consistent with the crown length models of Beekhuis and of Valen-
tine et al., who obtained linear relationships between mean crown length
(or canopy depth) and average spacing (figure 6). For some reason, other
studies have used crown length to tree height ratios, which do not have an
obvious biological interpretation.

Crown
depth

Foliage depth = intercept

Figure 6: Conical IFs are consistent with linear relationships between canopy
depth and average spacing.

Final thoughts

The 1970s enthusiasm for spatial individual-tree modelling ended with the
realization that tree coordinates, which are laborious to obtain and were
not available from inventory data anyway, contributed little or nothing
to growth prediction accuracy. By the 1980s everybody was publishing
individual-tree distance-independent models, where size increments are esti-
mated from tree size and stand-level variables. These remain the norm for
most practical growth and yield forecasting. TASS is an (the?) exception.
Spatial models are still common in ecological research.
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Possible reasons for the insensitivity of growth to plant locations include
plasticity, and micro-site variability, which induces positive spatial corre-
lations that subtract from the negative correlations expected from com-
petition. By the way, micro-site effects could be demonstrated using the
resource map in siplab. In addition, the prediction statistics of individual-
tree distance-independent models are inflated by reverse causality. The
most popular models are based on data from healthy unmanaged or lightly
managed forest stands, and it is becoming clear that they fail to correctly
predict behavior following disturbances like thinning or pest or storm dam-
age.

I believe that, for forest management, sound stand-level (whole-stand)
models are the way to go. By “sound” I mean reflecting plausible mech-
anisms, and avoiding as much as possible reverse causality fallacies that
are embedded even in acclaimed models supposedly based on physiologi-
cal principles. Whole-stand models have been largely limited to “simple”
stands, even-aged and mono-specific. Recent work has extended their
scope, although complexity increases quite a bit. More in García (2017)
and references therein.

Aggregate models, however, are conceptually more obscure and ab-
stract, lacking the intuitive appeal of individual-based formulations. Fully
spatial models, in particular, have a high didactic value. They are also
useful as research tools for exploring the fundamentals of stand dynamics.
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