
Fitting Reducible SDE Models

Vignette for resde

Contents

1 Introduction 1

2 The model 3

3 Single-unit estimation 4
3.1 Example 1, single unit with additive process noise 5
3.2 Example 2, single unit with multiplicative process noise . . 8

4 Hierarchical (two-level) models 10
4.1 Example 3, fixed local parameters 11
4.2 Example 4, random local parameters 15

5 Additional features and advanced usage 17
5.1 Derivatives . 17
5.2 Under the hood . 17
5.3 Fixing eta . 19
5.4 On transformations . 20

5.4.1 A unifying transformation 20
5.4.2 More general curves 23
5.4.3 General differential equations 25

References 25

1 Introduction

Package resde computes maximum-likelihood (ML) parameter estimates
for reducible stochastic differential equations (RSDEs, more on these in a

1

minute). Observations are at discrete points in time, not necessarily evenly
spaced, and may include measurement error. Currently, resde handles only
univariate time-independent RSDEs. In the simplest case, there is a single
individual or sampling unit (unit, for short). More generally, there may
be a set of units, with some parameters common to all units (global), and
others specific to each unit (local). Estimation in these two-level hierarchical
models can use either a fixed effects approach, or more fashionable mixed
effects methods.

RSDEs are SDEs that can be reduced to linear by a change of variables.
This may seem unduly restrictive, but we shall see that many important
problems can be formulated this way. In particular, linearizing transfor-
mations exist for most of the univariate growth models encountered in the
literature. In fact, any differential equation with an invertible closed-form
solution can be linearized (section 5.4.2).

In García (2019), I showed an R function, uvector(), that generates a
certain sum of squares that minimized produces ML estimates (not least-
squares estimates). That worked, but the necessary incantations could
become rather complex and less than intuitive. Package resde offers a
more user-friendly front-end. There are two main functions: sdemodel()
specifies the model form and initial conditions — for a unit in case of
hierarchical models. That includes the variable transformation, any re-
parameterizations, and the existence or not of process, measurement, and
initial condition noise. Then, sdefit() uses uvector() internally to per-
form the estimation, given the model defined by sdemodel(), the data, and
starting parameter guesses. For hierarchical models, one must also identify
the parameters as globals or locals, and indicate if fixed or mixed effects
are to be used.

Section 3 of García (2019) provides a quick introduction to SDEs. Gar-
cía (2013) might be useful for those not comfortable with dynamical sys-
tems.

The following section describes the model equations, and how they are
specified in sdemodel(). Section 3 explains the use of sdefit() for single-
unit models, and section 4 does the same for hierarchical ones. We go over
all the SDE examples from García (2019), where a few additional details
can be found. Look also in there for literature references. Finally, section 5
covers some non-essential odds and ends.

2

2 The model

We assume that there is some transformation of the variable of interest X,

Y = φ(X) , (1)

possibly containing unknown parameters, such that Y for a unit follows a
linear SDE

dY = (β0 + β1Y) dt+ µpσp dW , (2)

with a possibly random initial condition

Y (t0) = φ(x0) + µ0ϵ0 , ϵ0 ∼ N(0, σ2
0) . (3)

That is, X obeys a reducible (to linear) SDE. There are n possibly noisy
observations xi such that

yi = φ(xi) = Y (ti) + µmϵi ; i = 1, . . . , n ;

t0 < t1 < · · · < tn ; ϵi ∼ N(0, σ2
m) . (4)

The ϵi are mutually independent, and independent of the Wiener (aka
Brownian motion) random process W (t).

There may be a re-parameterization, where any of the “base” parame-
ters β0, β1, t0, y0, µp, µ0, µm can be replaced by functions of new parameters.
For instance, an SDE

dXc = b(ac −Xc) dt+
√
bσp dW ,

with initial condition fixed at the origin, can be specified by the transfor-
mation Y = φ(X, c) = Xc and the parameter substitutions β0 ← bac, β1 ←
−b, µp ←

√
b, and t0, x0, µ0 ← 0. If there are no measurement errors one

would set µm ← 0, otherwise µm ← 1.
In resde, the model specification is done with function sdemodel(). The

arguments and defaults are

sdemodel(phi=~x, phiprime=NULL, beta0=~beta0, beta1=~beta1, t0=0,
x0=0, mu0=0, mup=1, mum=1)

The values are either constants, or formulas with an empty left-hand side.
The optional phiprime can be an expression for the derivative of φ with

3

respect to x. If the derivative is not given, it is automatically generated with
the Deriv package. The result from sdemodel() is used by the estimation
function sdefit().

Assume that resde is properly installed. For the example above,

library(resde)
exmpl <- sdemodel(phi=~x^c, beta0=~b*a^c, beta1=~-b, mup=~sqrt(b))

Model:
y = phi(x, c) = x^c
y’ = phiprime(x, c) = c * x^(c - 1)
dY = (b * a^c + -b * Y) dt + sqrt(b) * sigmap * dW
Y(0) = phi(0, c)
yi = Y(ti) + sigmam * ei
Parameters:
a, b, c

The leading ## are not displayed by R, but are used here to distinguish out-
puts from inputs. Always check the displayed result to see if that is what
you meant. The display can be obtained again with sdemodel_display(exmpl).
Note that here the errors ei and e0 have unit vsriances, so that ϵi = σmei
and ϵ0 = σ0e0. More examples below.

3 Single-unit estimation

The following are the sdefit() arguments relevant to fitting an RSDE
model to a single individual or sampling unit: sdefit(model, x, t,
data=NULL, start=NULL, known=NULL). The output of sdemodel() is passed
in the argument model. Arguments x and t are either data vectors, or names
for the relevant columns in the data frame data. A named vector or list
start gives starting parameter values for the optimization. The optional
named vector or list known can contain parameters fixed at given values for
a particular estimation run, as an alternative to running sdemodel() again.

The output of sdefit() is a list with two components, named fit and
more. The first, fit, is the result of the minimization of the sum of squares
from uvector(), performed by the nonlinear least-squares function nls().

4

It contains the ML parameter estimates, except for the σ’s. The second com-
ponent, more, gives the σ estimates, the maximized log-likelihood value,
and AIC and BIC statistics.

3.1 Example 1, single unit with additive process noise

This example is from section 3.2.1 and Appendix C.1 of García (2019).
Loblolly is a data set included with R, containing height and age data

for 14 trees. Heights hi = H(ti) are in feet, and ages ti are in years. For
this example we use the 6 observations from the first tree, tree #301:

lob301 <- Loblolly[Loblolly$Seed == 301,]

A suitable model is
dHc

dt
= b(ac −Hc) ,

which on integration gives the commonly used Richards growth curve. The
special case c = −1 gives the logistic, and c close to 0 approximates the
Gompertz curve, two models that have been used in previous analyses of
this data. Let the height be 0 at age 0.

Assume additive process noise

dHc = b(ac −Hc) dt+ σp dW ,

and measurement error
hc
i = Hc(ti) + ϵi ,

where the ϵi are independent normally distributed with mean 0 and vari-
ance σ2

m.
In resde, the model specification is

m <- sdemodel(phi=~x^c, beta0=~b*a^c, beta1=~-b) # else, defaults

Model:
y = phi(x, c) = x^c
y’ = phiprime(x, c) = c * x^(c - 1)
dY = (b * a^c + -b * Y) dt + sigmap * dW
Y(0) = phi(0, c)
yi = Y(ti) + sigmam * ei
Parameters:
a, b, c

5

Now, the parameter estimation:

f <- sdefit(m, x="height", t="age", data=lob301,
start=c(a=60, b=0.1, c=1))

Warning: Solution at boundary, it may be a local optimum.
Compare logLik with mum = 0

f

$fit
Nonlinear regression model
model: 0 ~ uvector(x = height, t = age, unit = NULL, beta0 = b
* a^c, beta1 = -b, eta = eta, eta0 = 0, x0 = 0, t0 = 0, lambda
= list(c = c), mum = 1, mu0 = 0, mup = 1, sorted = TRUE)
data: lob301
a b c eta
72.5459 0.0967 0.5024 1.0000
residual sum-of-squares: 1.327
##
Algorithm "port", convergence message: relative convergence (4)
##
$more
sigma_p sigma_m logLik AIC BIC
0.00000000 0.04866015 -3.98808081 17.97616162 16.93495896

The parameter estimates are a = 72.55, b = 0.0967, c = 0.5024, σp = 0, and
σm = 0.04866, with a maximized log-likelihood value of −4.0. I’ll explain
eta shortly. This would suggest that most of the variability arises from
measurement errors. However, σp = 0 is at the boundary of the admissi-
ble values, and therefore this could be a local optimum different from the
global one. To confirm, we force σm = 0 (or rather µmσm = 0), as suggested
by the warning:

m <- sdemodel(phi=~x^c, beta0=~b*a^c, beta1=~-b, mum=0)

Model:
y = phi(x, c) = x^c

6

y’ = phiprime(x, c) = c * x^(c - 1)
dY = (b * a^c + -b * Y) dt + sigmap * dW
Y(0) = phi(0, c)
yi = Y(ti)
Parameters:
a, b, c

sdefit(m, x="height", t="age", data=lob301,
start=c(a=60, b=0.1, c=1))

$fit
Nonlinear regression model
model: 0 ~ uvector(x = height, t = age, unit = NULL, beta0 =
b * a^c, beta1 = -b, eta = 0, eta0 = 0, x0 = 0, t0 = 0, lambda
= list(c = c), mum = 0, mu0 = 0, mup = 1, sorted = TRUE)
data: lob301
a b c
71.5940 0.1011 0.4863
residual sum-of-squares: 1.897
##
Number of iterations to convergence: 5
Achieved convergence tolerance: 7.327e-07
##
$more
sigma_p logLik AIC BIC
0.03273267 -5.05854635 18.11709269 17.28413057

The log-likelihood is a little worse at −5.1 (the AIC and BIC are not directly
comparable, because there is one less free parameter). Only log-likelihood
differences are relevant, and some arguments suggest that differences of
around 2 units might be considered as “significant”. Therefore, this data
does not provide enough information about the values of the sigmas. One
could also say that the model is over-parameterized. This seems to be
typical, at least with short time series.

As mentioned before, the first component in the output from sdefit() is
the output from nls(). It shows the uvector() call used in García (2019),
this time automatically generated within sdefit(). There, eta is the rela-
tive measurement variance η = σ2

m

σ2
p+σ2

m
. In the first run, η was constrained to

7

be between 0 and 1 by using algorithm port in nls(), which allows bounds
on the optimization variables.

A little more information can be extracted from the nls fit:

summary(f$fit)

##
Formula: 0 ~ uvector(x = height, t = age, unit = NULL, beta0 =
b * a^c,
beta1 = -b, eta = eta, eta0 = 0, x0 = 0, t0 = 0, lambda =
list(c = c),
mum = 1, mu0 = 0, mup = 1, sorted = TRUE)
##
Parameters:
Estimate Std. Error t value Pr(>|t|)
a 72.54593 5.06284 14.329 0.00484 **
b 0.09670 0.01296 7.459 0.01750 *
c 0.50244 0.03931 12.781 0.00607 **
eta 1.00000 0.43602 2.293 0.14882

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.8147 on 2 degrees of freedom
##
Algorithm "port", convergence message: relative convergence (4)

Note that here Residual standard error, and residual sum-of-squares
in fit, correspond to the values from uvector() and not to hi or hc

i .

3.2 Example 2, single unit with multiplicative process noise

Section 3.2.1 and Appendix C.2 of García (2019).
In the previous example, consider now a multiplicative process noise

instead of additive:

dHc = b(ac −Hc)(dt+ σp dW) = b(ac −Hc) dt+ bσp(a
c −Hc) dW .

The so-called Lamperti transform leads to a model

dY = −b dt+ bσp dW ,

8

with
Y = φ(H) = ln|ac −Hc| .

Assume measurement errors of the form

yi = Y (ti) + ϵi , ϵi ∼ N(0, σ2
m) .

In resde,

m <- sdemodel(~log(abs(a^c - x^c)), beta0=~-b, beta1=0, mup=~b)

Model:
y = phi(x, a, c) = log(abs(a^c - x^c))
y’ = phiprime(x, a, c) = {; .e2 <- a^c - x^c; -(c
* x^(c - 1) * sign(.e2)/abs(.e2));}
dY = (-b + 0 * Y) dt + b * sigmap * dW
Y(0) = phi(0, a, c)
yi = Y(ti) + sigmam * ei
Parameters:
a, b, c

sdefit(m, x="height", t="age", data=lob301,
start=c(a=70, b=0.1, c=1))

Warning: Solution at boundary, it may be a local optimum.
Compare logLik with mum = 0

$fit
Nonlinear regression model
model: 0 ~ uvector(x = height, t = age, unit = NULL, beta0 =
-b, beta1 = 0, eta = eta, eta0 = 0, x0 = 0, t0 = 0, lambda =
list(a = a, c = c), mum = 1, mu0 = 0, mup = b, sorted =
TRUE)
data: lob301
a b c eta
77.10687 0.08405 0.54946 1.00000
residual sum-of-squares: 1.154
##
Algorithm "port", convergence message: relative convergence (4)
##

9

$more
sigma_p sigma_m logLik AIC BIC
0.00000000 0.01576676 -3.56821125 17.13642250 16.09521985

The derivative produced by Deriv::Deriv() is a little messy, but it works.
On aesthetic grounds, one might include in sdemodel the simpler equivalent
phiprime = c*x^(c-1)/(x^c - a^c).

The log-likelihood is not significantly different from the one from the
additive model. Not much difference either in the fitted curves:

plot(c(0,height) ~ c(0, age), data=lob301)
curve(77.10687 * (1 - exp(-0.08405 * x))^(1/0.54946), add=T,

col="red")
curve(72.5459 * (1 - exp(-0.0967 * x))^(1/0.5024), add=T,

col="blue")

0 5 10 15 20 25

0
10

20
30

40
50

60

c(0, age)

c(
0,

 h
ei

gh
t)

As with any optimization, one should be careful and try different start-
ing values, because local optima can occur. For instance, in the last run,
changing the start to a=60 produces a different (worse) solution.

4 Hierarchical (two-level) models

Often the data consists of several measurements on each of a number of
units. For instance, the measurements on each of the 14 trees in Loblolly.
This is known as panel, repeated measures, or longitudinal data, and gives

10

rise to hierarchical or multilevel models; resde can deal with two hierar-
chical levels. Some parameters may vary among units (local), while others
are common to all units (global), possibly after a re-parameterization of
the original model. Local parameters may be treated as fixed unknown val-
ues. Frequently, interest lies mainly on the globals, and the locals are then
called nuisance parameters.

A popular alternative is to think of the local parameters as, in some
sense, “random”. For instance, the data may be thought of as a random
sample from some hypothetical super-population, in which the local pa-
rameters have a Normal distribution. In mixed-effects terminology, the
globals and the means of the locals are fixed effects, while the deviations
of the locals from their means are random effects, usually normally dis-
tributed. The units are called groups (of observations). The advantage is
that then there are less parameters to be estimated: instead of one local
value for each unit, there is now only a mean and a variance, and possibly
also covariances between locals. On the other hand, all these are additional
assumptions. In particular, the assumptions are not realistic if the units are
not a simple random sample from the population. Also, estimation is more
complicated, and not as robust as minimizing a sum of squares.

4.1 Example 3, fixed local parameters

Section 3.3.1 and Appendix E of García (2019).
Consider fitting Richards SDE models simultaneously to all the 14 trees

in the Loblolly data set. The parameterization can be important here, so
we use the Box-Cox transformation, ensuring that a and b are proper scale
parameters:

Y =(H/a)(c)

dY =− Y d(bt) + σp dW (bt) = −bY dt+
√
|b|σp dW (t) ,

where x(c) denotes the Box-Cox transformation

x(c) =

{
xc−1
c

if c ̸= 0 ,

lnx if c = 0 .
(5)

It can be seen that for c ̸= 0 one obtains the same Richards differential
equation as before, but now the Gompertz model is also included, when
c = 0.

11

Assume that the measurement error is negligible compared to the pro-
cess noise, i.e., σm = 0, and that the curves start at the origin t = 0, H = 0.

Using the Box-Cox transformation bc() included in resde, the model is

m <- sdemodel(phi=~bc(x/a, c), beta0=0, beta1=~-b,
mup=~sqrt(abs(b)), mum=0)

Model:
y = phi(x, a, c) = bc(x/a, c)
y’ = phiprime(x, a, c) = if (abs(c) < 1e-300) 1/x else
exp(c * (log(x) - log(a)))/x
dY = (0 + -b * Y) dt + sqrt(abs(b)) * sigmap * dW
Y(0) = phi(0, a, c)
yi = Y(ti)
Parameters:
a, b, c

Again, the generated derivative is a little more complex than nec-
essary. One could have included phiprime = (x/a)^(c-1)/a, or
phiprime = bc_prime(x/a, c)/a.

For hierarchical models, one must indicate a variable that identifies the
units in the parameter unit of sdefit(), "Seed" in this case. Also, global
and local are used instead of start. Starting values for locals can be
vectors with one value for each unit, or a single value that applies to all.

First, take a as local, that is, the asymptotes aj vary from tree to tree:

alocal <- sdefit(m, x="height", t="age", unit="Seed",
data=Loblolly, global=c(b=0.1, c=0.5), local=c(a=70))

alocal

$fit
Nonlinear regression model
model: 0 ~ uvector(x = height, t = age, unit = Seed, beta0 = 0,
beta1 = -b, eta = 0, eta0 = 0, x0 = 0, t0 = 0, lambda = list(a
= a[Seed], c = c), mum = 0, mu0 = 0, mup = sqrt(abs(b)),
sorted = TRUE)
data: Loblolly

12

b c a1 a2 a3 a4 a5
0.09472 0.49182 68.36652 69.11597 71.87593 70.69004 70.44041
a6 a7 a8 a9 a10 a11 a12
71.38287 72.90629 70.92201 74.01903 74.77265 75.44945 76.41765
a13 a14
76.91872 78.84127
residual sum-of-squares: 40.35
##
Number of iterations to convergence: 3
Achieved convergence tolerance: 8.653e-06
##
$more
sigma_p logLik AIC BIC
0.03358892 -88.39580749 210.79161498 252.11550056

Now try a global and b local:

(blocal <- sdefit(m, x="height", t="age", unit="Seed",
data=Loblolly, global=c(a=70, c=0.5), local=c(b=0.1)))

$fit
Nonlinear regression model
model: 0 ~ uvector(x = height, t = age, unit = Seed, beta0 =
0, beta1 = -b[Seed], eta = 0, eta0 = 0, x0 = 0, t0 = 0, lambda =
list(a = a, c = c), mum = 0, mu0 = 0, mup = sqrt(abs(b[Seed])),
sorted = TRUE)
data: Loblolly
a c b1 b2 b3 b4 b5
73.08143 0.49156 0.08912 0.09082 0.09495 0.09053 0.08915
b6 b7 b8 b9 b10 b11 b12
0.09111 0.09496 0.08957 0.09680 0.09819 0.09843 0.09984
b13 b14
0.09984 0.10313
residual sum-of-squares: 37.35
##
Number of iterations to convergence: 4
Achieved convergence tolerance: 2.873e-06
##

13

$more
sigma_p logLik AIC BIC
0.03231109 -85.15200926 204.30401852 245.62790410

The log-likelihood (or equivalently, the AIC or BIC) indicates that this model
fits the data slightly better than the one with a local.

Finally, with both a and b locals,

(ablocal <- sdefit(m, x="height", t="age", unit="Seed",
data=Loblolly, global=c(c=0.5), local=c(a=70, b=0.1)))

$fit
Nonlinear regression model
model: 0 ~ uvector(x = height, t = age, unit = Seed, beta0
= 0, beta1 = -b[Seed], eta = 0, eta0 = 0, x0 = 0, t0 = 0,
lambda = list(a = a[Seed], c = c), mum = 0, mu0 = 0, mup =
sqrt(abs(b[Seed])), sorted = TRUE)
data: Loblolly
c a1 a2 a3 a4 a5 a6
0.49062 68.38819 67.44865 68.64479 73.63619 76.07754 74.86101
a7 a8 a9 a10 a11 a12 a13
72.01170 76.95452 72.13086 71.98483 73.72215 74.17723 75.82487
a14 b1 b2 b3 b4 b5 b6
75.91534 0.09488 0.09798 0.10084 0.09010 0.08617 0.08933
b7 b8 b9 b10 b11 b12 b13
0.09646 0.08569 0.09818 0.09977 0.09783 0.09867 0.09670
b14
0.09976
residual sum-of-squares: 30.81
##
Number of iterations to convergence: 4
Achieved convergence tolerance: 6.665e-07
##
$more
sigma_p logLik AIC BIC
0.02936758 -77.06103324 214.12206648 287.04657045

14

Here the AIC or BIC have to be used for the comparison, because the num-
ber of free parameters is different. For AIC and BIC smaller is better. They
indicate that this is worse than the one-local versions.

Other structures could be defined by re-parameterization, substituting
functions of other global and local parameters for a, b or c.

By the way, if you are mystified by the strangely-looking Box-Cox trans-
formation, eq. (5), don’t be. It is basically a power transformation with a
twist, considering that linear (or more precisely affine) transformations are
often “uninteresting”. The point of it is that the limit limc→0(x

c−1)/c = lnx
makes the transformation continuous at c = 0, as a function of c. In the
process including the logarithm as a special case. Hiding those details in-
side the definition, using x(c) saves us the hassle of having to talk about the
special case all the time. And the logarithmic transformation comes along
for free. We’ll come back to this, with a vengeance, in Section 5.4.1. Physi-
cists discovered the transformation independently, looking from the other
end, calling it a generalized logarithm, denoted by lnc(x).

4.2 Example 4, random local parameters

Section 3.3.2 and Appendix F of García (2019).
The mixed effects method uses nlme() instead of nls(). This is chosen

by setting method = "nlme" in sdefit(). The default is method = "nls".
Let us fit the b-local version from Example 3:

(blocal_mx <- sdefit(m, x="height", t="age", unit="Seed",
data=Loblolly, global=c(a=70, c=0.5), local=c(b=0.1),
method="nlme"))

Error in nlme.formula(frml, data, fixed = fixed, random = random,
groups = groups, : step halving factor reduced below minimum in
PNLS step

Convergence fails. There is an optional argument control in sdefit(),
which accepts a list of control parameters to be passed on to nlme() or
nls(). Use it to increase the “PNLS tolerance” to 0.01, from the default
0.001:

15

(blocal_mx <- sdefit(m, x="height", t="age", unit="Seed",
data=Loblolly, global=c(a=70, c=0.5), local=c(b=0.1),
method="nlme", control = nlme::nlmeControl(pnlsTol =
0.01)))

$fit
Nonlinear mixed-effects model fit by maximum likelihood
Model: frml
Data: data
Log-likelihood: -101.7808
Fixed: fixed
a c b
73.43552334 0.49382756 0.09380411
##
Random effects:
Formula: b ~ 1 | Seed
b Residual
StdDev: 0.003814885 0.7307106
##
Number of Observations: 84
Number of Groups: 14
##
$more
sigma_p logLik AIC BIC
0.03316396 -101.78079275 213.56158550 225.71566950

This time it worked. The log-likelihood is not comparable to the one for
fixed locals (different numbers of parameters), but we can compare the AIC
and BIC criteria. The AIC values, 214 vs. 204 in Example 3, would suggest
that in this instance fixed locals is better than mixed effects. However, the
opposite is true according to the BIC, 226 vs. 246. This is because the BIC
penalizes the difference in parameter numbers more heavily than the AIC.

In this formulation b is a random variable, so that it does not make sense
to speak of estimates, but nlme() provides “predictions”:

coef(blocal_mx$fit)

a c b

16

329 73.43552 0.4938276 0.08972474
327 73.43552 0.4938276 0.09095012
325 73.43552 0.4938276 0.09399673
307 73.43552 0.4938276 0.09086502
331 73.43552 0.4938276 0.08972086
311 73.43552 0.4938276 0.09128954
315 73.43552 0.4938276 0.09406932
321 73.43552 0.4938276 0.09009376
319 73.43552 0.4938276 0.09535720
301 73.43552 0.4938276 0.09630472
323 73.43552 0.4938276 0.09646256
309 73.43552 0.4938276 0.09737925
303 73.43552 0.4938276 0.09741947
305 73.43552 0.4938276 0.09962427

5 Additional features and advanced usage

5.1 Derivatives

Deriv() seems to do a good job of producing transformation derivatives,
although as we have seen, sometimes not in the simplest possible form. If
desired, perhaps for troubleshooting, the name of a user-supplied deriva-
tive function can be given in the argument phiprime of sdefit(). The same
can be done for the transformation phi. See phi.R for suitable function
templates.

5.2 Under the hood

The aim of resde is to facilitate the application of the function uvector()
from García (2019). That function uses tricks based on work by Fur-
nival and by Box and Cox to compute values such that minimizing the
sum of their squares produces maximum-likelihood parameter estimates.
The sum of squares is minimized with nls() from package stats, or with
nlme() from package nlme. Setting up a call to uvector(), as done in
García (2019), can be rather complicated, a process that is “mechanized”
by sdemodel() and sdefit(). The generated call to uvector() can be

17

seen with formula(f$fit) or (f$fit)$call, where f is the output from
sdefit(). Conceivably, there may be applications where it might be neces-
sary to use uvector() directly.

When there is both process and measurement noise, resde uses inter-
nally an additional parameter, eta, that corresponds to the relative mea-
surement error η = σ2

m/(σ
2
p + σ2

m). It must take values between 0 (σm = 0),
and 1 (σp = 0). With nls(), algorithm port performs the constrained opti-
mization. For mixed effects, nlme() does not allow constraints. Therefore,
optimize() is used in that case to perform a one-dimensional optimization
over eta, calling nlme() at each step.

Here is an example, freeing σm in the b-local model of Example 3:

m <- sdemodel(phi=~bc(x/a, c), beta0=0, beta1=~-b,
mup=~sqrt(abs(b)))

Model:
y = phi(x, a, c) = bc(x/a, c)
y’ = phiprime(x, a, c) = if (abs(c) < 1e-300) 1/x else
exp(c * (log(x) - log(a)))/x
dY = (0 + -b * Y) dt + sqrt(abs(b)) * sigmap * dW
Y(0) = phi(0, a, c)
yi = Y(ti) + sigmam * ei
Parameters:
a, b, c

sdefit(m, x="height", t="age", unit="Seed", data=Loblolly,
global=c(a=70, c=0.5), local=c(b=0.1))

Warning: Solution at boundary, it may be a local optimum.
Compare logLik with mup = 0

$fit
Nonlinear regression model
model: 0 ~ uvector(x = height, t = age, unit = Seed, beta0
= 0, beta1 = -b[Seed], eta = eta, eta0 = 0, x0 = 0, t0 = 0,
lambda = list(a = a, c = c), mum = 1, mu0 = 0, mup =
sqrt(abs(b[Seed])), sorted = TRUE)
data: Loblolly
a c eta b1 b2 b3 b4

18

73.08144 0.49156 0.00000 0.08912 0.09082 0.09495 0.09053
b5 b6 b7 b8 b9 b10 b11
0.08915 0.09111 0.09496 0.08957 0.09680 0.09819 0.09843
b12 b13 b14
0.09984 0.09984 0.10313
residual sum-of-squares: 37.35
##
Algorithm "port", convergence message: relative convergence (4)
##
$more
sigma_p sigma_m logLik AIC BIC
0.03231109 0.00000000 -85.15200926 206.30401852 250.05872090

Note the call to uvector() in the model item from nls(), and the presence
of the parameter eta. Estimates were the same as before. The AIC and BIC
differ because of the additional parameter. We explore further the error
structure next.

5.3 Fixing eta

We already saw how to specify models without measurement error or with-
out process noise by setting the sigma multipliers mum=0 or mup=0, respec-
tively. For more flexibility, there is a “hidden” feature for specifying a rel-
ative error magnitude through η (eta): the argument known in sdefit(),
which fixes parameters at given values, accepts also a value for eta.

Let us use this to investigate the relationship between the maximized
log-likelihood and η, plotting η’s profile log-likelihood:

lgLik <- eta <- seq(from=0, to=1, by=0.05)
for(i in seq_along(eta)){

lgLik[i] <- (sdefit(m, x="height", t="age", unit="Seed",
data=Loblolly, global=c(a=73, c=0.49),
local=c(b=0.095), known=c(eta=eta[i]))$more

)["logLik"]
}

Warning: Solution at boundary, it may be a local optimum.
Compare logLik with mup = 0

19

Warning: Solution at boundary, it may be a local optimum.
Compare logLik with mum = 0

plot(lgLik ~ eta)

0.0 0.2 0.4 0.6 0.8 1.0

−
85

.5
−

85
.0

−
84

.5
−

84
.0

−
83

.5
−

83
.0

eta

lg
Li

k

We see that there are local optima at η = 0 (σm = 0), and at η = 1 (σp = 0).
This is what was causing trouble with the optimizations. However, the
significance of the log-likelihood differences is marginal. One may con-
clude that the data cannot tell us much about the error structure, so that
we are justified in choosing it from prior knowledge. E.g., if the height
observations were derived from tree rings, the measurement errors may
be negligible compared to the environmental noise, and σm = 0 would be
reasonable.

5.4 On transformations

5.4.1 A unifying transformation

It has been found that, allowing linear transformations of x and t, nearly
all the growth curve equations in the literature can be unified in a family
of functions with two shape parameters:

U(x, α, β) ≡ −[−x(α)](β) = t , (6)

in terms of the Box-Cox transformation defined in eq. (5). For instance,
the Richards is the spacial case β = 0, and the Hosfeld IV corresponds to

20

α = −1, β < 0 (Chakraborty (2019), and https://github.com/ogarciav/
grex/).

In eq. (6), x ranges between 0 and 1. If x goes from 0 up to an asymp-
tote a, we have F−1(x) = U(x/a, α, β). It is also possible to have neg-
ative scale factors, which reverse the x and t axes, and then F−1(x) =
U(1− x/a, α, β).

Figure 1: Sigmoid growth equations determined by the unified transformation
with parameters a = α and b = β. Items in parenthesis correspond to nega-
tive scale factors on x and t (reversed axes). Contours indicate the height of
the inflection point relative to the range of x. From García (2005, 2008), see
https://web.unbc.ca/~garcia/growth&yield/grex/ or Chakraborty (2019) for
model references.

Figure 1 shows the useful range of α and β, and the correspondence to
common growth equation models. The unifying transformation U(x, α, β)
has been implemented in the function unitran(), see ?unitran for details.
As an example, the following shows the inverse logistic:

21

https://github.com/ogarciav/grex/
https://github.com/ogarciav/grex/
https://web.unbc.ca/~garcia/growth&yield/grex/

curve(unitran(x, alpha=-1, beta=0))

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

x

un
itr

an
(x

, a
lp

ha
 =

 −
1,

 b
et

a
=

 0
)

The function can also be called with names: curve(unitran(x, "logistic"))
produces the same result.

The unified transformation can be useful when hunting for a suit-
able model form. With tree #301 again, applying eq. (7), let us try
y = U(x/a, α, β). This is similar to what we did in Example 2 for the
Richards model.

m <- sdemodel(phi=~unitran(x/a, alpha=alpha, beta=beta,
reverse="no"), phiprime=~unitran_prime(x/a, alpha=alpha,
beta=beta, reverse="no")/a, beta0=~b, beta1=0, mum=0)

Model:
y = phi(x, a, alpha, beta) = unitran(x/a, alpha = alpha,
beta = beta, reverse = "no")
y’ = phiprime(x, a, alpha, beta) = unitran_prime(x/a,
alpha = alpha, beta = beta, reverse = "no")/a
dY = (b + 0 * Y) dt + sigmap * dW
Y(0) = phi(0, a, alpha, beta)
yi = Y(ti)
Parameters:
a, alpha, b, beta

(f <- sdefit(m, x="height", t="age", data=lob301, start=c(a=70,
b=0.1, alpha=0.5, beta=0)))

22

$fit
Nonlinear regression model
model: 0 ~ uvector(x = height, t = age, unit = NULL, beta0
= b, beta1 = 0, eta = 0, eta0 = 0, x0 = 0, t0 = 0, lambda =
list(a = a, alpha = alpha, beta = beta), mum = 0, mu0 = 0,
mup = 1, sorted = TRUE)
data: lob301
a b alpha beta
132.39058 0.04348 0.33035 -1.23247
residual sum-of-squares: 0.7469
##
Number of iterations to convergence: 7
Achieved convergence tolerance: 2.811e-06
##
$more
sigma_p logLik AIC BIC
0.003162084 -2.262695616 14.525391232 13.484188578

As expected, summary(f$fit) indicates over-parameterization. But the re-
sult might suggest trying the Levacovic, Korf or Schumacher models as
more parsimonious named alternatives, e.g., by moving beta out of start
and into known=c(beta=-0.5).

One could also try the reversed form with 1-x/a. The default
reverse="auto" in unitran() does that automatically, but the discontinuity
at β = 0 causes the optimization to fail. Or perhaps one could experiment
with the form corresponding to eq. (8) below. There are limits to what is
worth doing with 6 data points, but you get the idea.

5.4.2 More general curves

Consider any growth curve (or other type of) model with trajectories given
by some function

x = F (t) .

One can write
F−1(x) = t .

23

Therefore, the transformation on the left-hand side obeys a (trivial) linear
differential equation:

y = F−1(x) → dy

dt
= 1 .

Any linear function of that transformation will also work:

y = pF−1(x) + q → dy

dt
= p , (7)

for any constants p ̸= 0 and q.
Somewhat more interesting is

y = exp[F−1(x)] → dy

dt
= exp[F−1(x)]

dF−1(x)

dt
= y .

Or more generally,

y = p exp[qF−1(x)] + r → dy

dt
= q(y − r) . (8)

In particular cases, p, q, r can be chosen to simplify the transformation.
E.g., for the Richards (or Bertalanffy-Richards) equation,

x = F (t) = a[1− sgn(c)e−b(t−t0)]1/c ,

t = F−1(x) = t0 − 1
b
ln|(x/a)c − 1| .

Some transformations that follow from eq. (7):

y = ln|(x/a)c − 1| , y = ln|xc − ac| , y = ln
ac − xc

c
.

For eq. (8), the simplest transformation is y = xc.
As another example, in the Hosfeld IV equation,

x = F (t) =
atc

tc + b
,

t = F−1(x) =

(
bx

a− x

)1/c

.

For eq. (7), one could use

y =

(
x

a− x

)k

= (a/x− 1)−k ,

and for eq. (8),

y = exp

[(
x

a− x

)k
]
= exp[(a/x− 1)−k] .

24

5.4.3 General differential equations

A univariate time-invariant (aka autonomous) differential equation has the
form

dx

dt
= f(x) .

These are often preferred to equations that include both x and t on the
right-hand side, because natural laws are not supposed to change from one
week to the next. From dx/f(x) = dt we get∫

dx

f(x)
= t .

Defining this integral as F−1(x) we are back to the situation above. Of
course, luck is needed for the integral to have a closed form (analytical
solution). On the other hand, it might be interesting to see how well the
estimation method works if phi() and phiprime() are calculated by nu-
merical integration.

Note: These identities are sometimes useful:

F ′(t) = 1/(F−1)′[F (t)] , (F−1)′(x) = 1/F ′[F−1(x)] .

Proof: Differentiate F−1[F (t)] = t or F [F−1(x)] = x.
For SDEs, it may be possible to linearize the deterministic part (aka the

trend or drift). Or reduce to a constant the stochastic term (diffusion or
volatility), through the Lamperti transform (García, 2019, sec. 3). In gen-
eral, it is not possible to get the desired form for both, but often one of the
terms is less important than the other. At any rate, there are good theoreti-
cal reasons for why linearity and Gaussianity should go well together.

References

Chakraborty, B., Bhowmick, A. R., Chattopadhyay, J., and Bhattacharya,
S. (2019) A novel unification method to characterize a broad class of
growth curve models using relative growth rate. Bulletin of Mathemati-
cal Biology 81(7) 2529–2552. (https://doi.org/10.1007/s11538-019-
00617-w).

25

https://doi.org/10.1007/s11538-019-00617-w
https://doi.org/10.1007/s11538-019-00617-w

García, O. (2013) Forest stands as dynamical systems: An introduction.
Modern Applied Science 7(5), 32–38. (https://doi.org/10.5539/mas.
v7n5p32).

García, O. (2019) Estimating reducible stochastic differential equations by
conversion to a least-squares problem. Computational Statistics, 2019,
34, 23–46. (https://doi.org/10.1007/s00180-018-0837-4).

Oscar García
September 11, 2024
(First version: November 13, 2020)

26

https://doi.org/10.5539/mas.v7n5p32
https://doi.org/10.5539/mas.v7n5p32
https://doi.org/10.1007/s00180-018-0837-4

	Introduction
	The model
	Single-unit estimation
	Example 1, single unit with additive process noise
	Example 2, single unit with multiplicative process noise

	Hierarchical (two-level) models
	Example 3, fixed local parameters
	Example 4, random local parameters

	Additional features and advanced usage
	Derivatives
	Under the hood
	Fixing eta
	On transformations
	A unifying transformation
	More general curves
	General differential equations

	References

